Self-association of a highly charged arginine-rich cell-penetrating peptide.

نویسندگان

  • Giulio Tesei
  • Mario Vazdar
  • Malene Ringkjøbing Jensen
  • Carolina Cragnell
  • Phil E Mason
  • Jan Heyda
  • Marie Skepö
  • Pavel Jungwirth
  • Mikael Lund
چکیده

Small-angle X-ray scattering (SAXS) measurements reveal a striking difference in intermolecular interactions between two short highly charged peptides-deca-arginine (R10) and deca-lysine (K10). Comparison of SAXS curves at high and low salt concentration shows that R10 self-associates, while interactions between K10 chains are purely repulsive. The self-association of R10 is stronger at lower ionic strengths, indicating that the attraction between R10 molecules has an important electrostatic component. SAXS data are complemented by NMR measurements and potentials of mean force between the peptides, calculated by means of umbrella-sampling molecular dynamics (MD) simulations. All-atom MD simulations elucidate the origin of the R10-R10 attraction by providing structural information on the dimeric state. The last two C-terminal residues of R10 constitute an adhesive patch formed by stacking of the side chains of two arginine residues and by salt bridges formed between the like-charge ion pair and the C-terminal carboxyl groups. A statistical analysis of the Protein Data Bank reveals that this mode of interaction is a common feature in proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide

Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...

متن کامل

Poly-arginine and arginine-rich peptides are neuroprotective in stroke models.

Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate pre...

متن کامل

Atomistic Molecular Simulations Suggest a Kinetic Model for Membrane Translocation by Arginine-Rich Peptides.

Arginine-rich cell penetrating peptides (ARCPPs) are known to quickly permeate cell membranes through a non-endocytotic pathway. Potential clinical applications of this facility have prompted enormous effort, both experimental and theoretical, to better understand how ARCPPs manage to overcome the prodigious thermodynamic cost of lipid bilayer permeation by these highly charged peptides. In thi...

متن کامل

Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization

Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i....

متن کامل

Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides

In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 43  شماره 

صفحات  -

تاریخ انتشار 2017